Final Design

Targeting Agent Mixing

Targeting Agent⊕ →

Agricultai Biological Targeted nano-chemotherapeutics for breast cancer treatment

Resuspension Buffer -

P-3 / R-101 Used Water

Refrigeration Cooled Water

Crystallization Tank

└╆╱**?}**╆──

P-10 / HX-101

Figure 4: Industrial Process Flow for nano co-crystal production

Michelle Cox (BE), Curtis Morgan (BE), Stephanie Neace (BE), and Gordon Showalter (BE)

Objective: develop an industrial process for the manufacture of Nafaxane

Imparting directed targeting and enhanced bioavailability to anti-cancer drugs is a perpetual challenge of the pharmaceutical industry. Exploiting the advantageous physical properties of nano-scale materials and specificity of receptor-binding ligands, we have optimized both lab and industrial scale processes for the synthesis and manufacture of a unique nano-suspension of active pharmaceutical ingredient (API) co-crystallized with a receptor-binding coformer (CF) dubbed Nafaxane. These nano-cocrystals enhance directed targeting and bioavailability.

Background and Theory

Figure 1: The biological background of Nafaxane

- to Enhanced Permeation and Retention (EPR) effect¹
- Increased solubility and bioavailability of hydrophobic materials¹

Advantages of receptor-specific ligands

- Decreased side-effects compared to

Experimental Design

- Framework established in previous literature¹ (Figure 2)
- Anti-solvent co-crystallization method
- Optimized with Paclitaxel as API
- Two factor full factorial

Results

	API Concentration	Drug: Coformer
+	5 g/L	2:1
-	3 g/L	1:1

20 mL

TEM images (Figure 3) was used to confirm size of the crystals, which are nano in width, although micro-scale in length. Differential Scanning Calorimetry (DSC) was used to confirm

Figure 3: TEM images of product solutions show both nano and micron sized crystals. The size bar is 0.5 um

Figure 2: Process flow and parameters of nano co-crystallization (ABOVE)

Advantages of nanoscale crystalline materials

Collection in highly vascularized tissues due

- Directed targeting to specific tissues²
- conventional chemotherapeutics

Unit Operations Scale up values for the final industrial scale process (Figure 4) were calculated from production volumes based on market shares of our main competitor, *Abraxane*. The annual production volume is 288 L of product for a market of 128,000 patients by 2019.

cocrystal

1 mL

Safety and Sustainability

Caustic clean-in-place materials present safety hazard (NaOH and H₃PO₄)³ (G)

P-8 / RO-101

Reverse Osmosis

Waste Solution ■

- Required off-site processing of any API or Coformer waste
- Water from diafiltration is purified by reverse osmosis and recycled (E)

Figure 7: Morphological charts comparing alternative solutions for crystallization (LEFT) and filtration (RIGHT)

- Refrigeration unit recycles water
- Potential environmental impact on Yew Tree due to increase taxol demand
- Quality-assurance sampling along process (A, B, C, D)

P-13 / GRN-101

Post Processing CIP

working volume

Figure 5: Detail of unit operations for crystallization tank (LEFT) and filtration (RIGHT)

Step 1 | Ultrafiltration

Step 2 | Diafiltration

Result: Concentrated solution, reduced

Result: Exchanged buffer for biodelivery

Figure 6: The Pacific Yew Tree is the source of taxol

Alternative Solutions GOAL: Flow Filtration CONCENTRAT **Desired Produc** AND EXCHANG ANTI-SOLVENT THE BUFFER OF COCRYSTALS FILTRATION **PRODUCT** ---------------

Economics⁴

- Equipment Cost: \$24,101
- Annual material cost: \$613,234
- Desired ROI: 50%
- Calculated Unit Cost: \$782
- Time of Return: 1.54 years

Figure 8: Elements of equipment purchasing costs (ABOVE) and material costs (BELOW)

Material	Cost	% Cost
PXL	\$112,400.00	18.32904
CF	\$854.49	0.139341
DMSO	\$34,580.00	5.638952
NaOH	\$7,770.00	1.267052
H ₃ PO ₄	\$7,630.00	1.244222
Filter	\$450,000.00	73.38139
Total	\$613,234.49	100

Material prices from Sigma Aldrich and Fischer Scientific

Impact: How does Nafaxane Compare?

	Abraxane	Nafaxane
Method of Action	Albumin-Bound	Ligand co-crystallized
Cost per Unit	\$42005	\$782
Potential Side Effects	Nausea, vomiting, diarrhea, mouth sores, headaches, muscle and joint paint, neuropathy, diziness ⁶	Risk of infection*, bruising and bleeding*, anemia*, diarrhea*, sore mouth*, fatigue*, hair loss*3, Kidney damage**
Method of Delivery	Injectable	Injectable
Potential Use	Breast, lung, pancreatic, and non- small cell lung cancers	Breast, ovarian, colon, renal, and lung cancers, mesothelioma, myeloid leukemia, neck carcinomas, and pediatric ependymal brain tumors

References

**From directed targeting

- 1. Li, T. (2006). US Patent No. 20060280680A1. Washington, DC: US Patent and Trademark Office Peer, D., Karp, J., Hong, S., Farokhzad, O., Margalit, R., & Langer, R. (2007). Nanocarriers as an
- emerging platform for cancer therapy. *Nature Nanotechnology* 2, 751-760.
- MSDS Search and Product Safety Center. (2014). Sigma Aldrich. Retrieved from sigmaaldrich.com/safety-center.html
- . Peters, M., Timmerhaus, K., and West, R. (2002). Plant Design and Economics for Chemical Engineers. McGraw-Hill. New York, NY 2002.
- Berenson, A. (2006). Hope at \$42000 a Dose. New York Times, October 1 2006. Online edition.
- Abraxane. (2013). Celgene Corporation. Retrieved from www.abraxane.com

first round and additional

characterization is required.

Sponsor: J. Irudayaraj, Ph.D. Course Instructor: M. Okos, Ph.D. Technical Mentor: P. Bhandari, M.S.

crystals formation by comparing profiles

for paclitaxel alone, ligand alone, and

crystals. Data was inconclusive for the

